18 research outputs found

    Optical-flow-based motion compensation algorithm in thermoelastic stress analysis using single-infrared video

    Get PDF
    Thermoelastic stress analysis (TSA) is a non-contact measurement technique for stress distribution evaluation. A common issue related to this technique is the rigid-displacement of the specimen during the test phase, that can compromise the reliability of the measurement. For this purpose, several motion compensation techniques have been implemented over the years, but none of them is provided through a single measurement and a single sample surface conditioning. Due to this, a motion compensation technique based on Optical-Flow has been implemented, which greatly increases the strength and the effectiveness of the methodology through a single measurement and single specimen preparation. The proposed approach is based on measuring the displacement field of the specimen directly from the thermal video, through optical flow. This displacement field is then used to compensate for the specimen's displacement on the infrared video, which will then be used for thermoelastic stress analysis. Firstly, the algorithm was validated by a comparison with synthetic videos, created ad hoc, and the quality of the motion compensation approach was evaluated on video acquired in the visible range. The research moved into infrared acquisitions, where the application of TSA gave reliable and accurate results. Finally, the quality of the stress map obtained was verified by comparison with a numerical model.</p

    GekkoFS: A temporary distributed file system for HPC applications

    Get PDF
    We present GekkoFS, a temporary, highly-scalable burst buffer file system which has been specifically optimized for new access patterns of data-intensive High-Performance Computing (HPC) applications. The file system provides relaxed POSIX semantics, only offering features which are actually required by most (not all) applications. It is able to provide scalable I/O performance and reaches millions of metadata operations already for a small number of nodes, significantly outperforming the capabilities of general-purpose parallel file systems.The work has been funded by the German Research Foundation (DFG) through the ADA-FS project as part of the Priority Programme 1648. It is also supported by the Spanish Ministry of Science and Innovation (TIN2015–65316), the Generalitat de Catalunya (2014–SGR–1051), as well as the European Union’s Horizon 2020 Research and Innovation Programme (NEXTGenIO, 671951) and the European Comission’s BigStorage project (H2020-MSCA-ITN-2014-642963). This research was conducted using the supercomputer MOGON II and services offered by the Johannes Gutenberg University Mainz.Peer ReviewedPostprint (author's final draft

    GekkoFS: A temporary burst buffer file system for HPC applications

    Get PDF
    Many scientific fields increasingly use high-performance computing (HPC) to process and analyze massive amounts of experimental data while storage systems in today’s HPC environments have to cope with new access patterns. These patterns include many metadata operations, small I/O requests, or randomized file I/O, while general-purpose parallel file systems have been optimized for sequential shared access to large files. Burst buffer file systems create a separate file system that applications can use to store temporary data. They aggregate node-local storage available within the compute nodes or use dedicated SSD clusters and offer a peak bandwidth higher than that of the backend parallel file system without interfering with it. However, burst buffer file systems typically offer many features that a scientific application, running in isolation for a limited amount of time, does not require. We present GekkoFS, a temporary, highly-scalable file system which has been specifically optimized for the aforementioned use cases. GekkoFS provides relaxed POSIX semantics which only offers features which are actually required by most (not all) applications. GekkoFS is, therefore, able to provide scalable I/O performance and reaches millions of metadata operations already for a small number of nodes, significantly outperforming the capabilities of common parallel file systems.Peer ReviewedPostprint (author's final draft

    Thermoelasticity and ArUco marker-based model validation of polymer structure: application to the San Giorgio's bridge inspection robot

    Get PDF
    Experimental procedures are often involved in the numerical models validation. To define the behaviour of a structure, its underlying dynamics and stress distributions are generally investigated. In this research, a multi-instrumental and multi-spectral method is proposed in order to validate the numerical model of the Inspection Robot mounted on the new San Giorgio's Bridge on the Polcevera river. An infrared thermoelasticity-based approach is used to measure stress-concentration factors and, additionally, an innovative methodology is implemented to define the natural frequencies of the Robot Inspection structure, based on the detection of ArUco fiducial markers. Established impact hammer procedure is also performed for the validation of the results.</p

    State-Space Model for Arrival Time Simulations and Methodology for Offline Blade Tip-Timing Software Characterization

    No full text
    Blade tip-timing is an extensively used technique for measuring blade vibrations in turbine and compressor stages; it is one of the preferred techniques used for characterizing their dynamic behaviors using non-contact probes. Typically, arrival time signals are acquired and processed by a dedicated measurement system. Performing a sensitivity analysis on the data processing parameters is essential for the proper design of tip-timing test campaigns. This study proposes a mathematical model for generating synthetic tip-timing signals, descriptive of specific test conditions. The generated signals were used as the controlled input for a thorough characterization of post-processing software for tip-timing analysis. This work represents the first step in quantifying the uncertainty introduced by tip-timing analysis software into user measurements. The proposed methodology can also offer essential information for further sensitivity studies on parameters that influence the accuracy of data analysis during testing

    Experimental Investigation on Hardware and Triggering Effect in Tip-Timing Measurement Uncertainty

    No full text
    Non-destructive testing for structural health monitoring is becoming progressively important for gas turbine manufacturers. As several techniques for diagnostics and condition-based maintenance have been developed over the years, the tip-timing approach is one of the preferred approaches for characterizing the dynamic behavior of turbine blades using non-contact probes. This experimental work investigates the uncertainty of the time-of-arrival of a Blade Tip-Timing measurement system, a fundamental requirement for numerical and aeromechanical modeling validation. The study is applied to both the measurement setup and the data processing procedure of a generic commercial measurement system. The influence of electronic components and signal processing on the tip-timing uncertainty is determined under different operating conditions

    Experimental Investigation on Hardware and Triggering Effect in Tip-Timing Measurement Uncertainty

    No full text
    Non-destructive testing for structural health monitoring is becoming progressively important for gas turbine manufacturers. As several techniques for diagnostics and condition-based maintenance have been developed over the years, the tip-timing approach is one of the preferred approaches for characterizing the dynamic behavior of turbine blades using non-contact probes. This experimental work investigates the uncertainty of the time-of-arrival of a Blade Tip-Timing measurement system, a fundamental requirement for numerical and aeromechanical modeling validation. The study is applied to both the measurement setup and the data processing procedure of a generic commercial measurement system. The influence of electronic components and signal processing on the tip-timing uncertainty is determined under different operating conditions

    Frequency response function identification using fused filament fabrication-3D-printed embedded ArUco markers

    No full text
    The assessment of modal components is a fundamental step in structural dynamics. While experimental investigations are generally performed through full-contact techniques, using accelerometers or modal hammers, this research proposes a non-contact Frequency Response Function identification measurement technique based on ArUco square fiducial markers displacement detection. A video of the phenomenon to be analyzed is acquired, and the displacement is measured through markers, using a dedicated tracking algorithm. The proposed method is presented using a harmonically excited fused filament fabrication-3D-printed flexible structure, equipped with multiple embedded-printed markers, whose displacement is measured with an industrial camera. Comparison with numerical simulation and an established experimental approach is finally provided for the results validation
    corecore